15 research outputs found

    The Automated Root Exudate System (ARES): a method to apply solutes at regular intervals to soils in the field.

    Get PDF
    Root exudation is a key component of nutrient and carbon dynamics in terrestrial ecosystems. Exudation rates vary widely by plant species and environmental conditions, but our understanding of how root exudates affect soil functioning is incomplete, in part because there are few viable methods to manipulate root exudates in situ. To address this, we devised the Automated Root Exudate System (ARES), which simulates increased root exudation by applying small amounts of labile solutes at regular intervals in the field. The ARES is a gravity-fed drip irrigation system comprising a reservoir bottle connected via a timer to a micro-hose irrigation grid covering c. 1 m2; 24 drip-tips are inserted into the soil to 4-cm depth to apply solutions into the rooting zone. We installed two ARES subplots within existing litter removal and control plots in a temperate deciduous woodland. We applied either an artificial root exudate solution (RE) or a procedural control solution (CP) to each subplot for 1 min day-1 during two growing seasons. To investigate the influence of root exudation on soil carbon dynamics, we measured soil respiration monthly and soil microbial biomass at the end of each growing season. The ARES applied the solutions at a rate of c. 2 L m-2 week-1 without significantly increasing soil water content. The application of RE solution had a clear effect on soil carbon dynamics, but the response varied by litter treatment. Across two growing seasons, soil respiration was 25% higher in RE compared to CP subplots in the litter removal treatment, but not in the control plots. By contrast, we observed a significant increase in microbial biomass carbon (33%) and nitrogen (26%) in RE subplots in the control litter treatment. The ARES is an effective, low-cost method to apply experimental solutions directly into the rooting zone in the field. The installation of the systems entails minimal disturbance to the soil and little maintenance is required. Although we used ARES to apply root exudate solution, the method can be used to apply many other treatments involving solute inputs at regular intervals in a wide range of ecosystems

    Drying and rewetting conditions differentially affect the mineralization of fresh plant litter and extant soil organic matter

    Get PDF
    Drought is becoming more common globally and has the potential to alter patterns of soil carbon (C) storage in terrestrial ecosystems. After an extended dry period, a pulse of soil CO2 release is commonly observed upon rewetting (the so-called ‘Birch effect’), the magnitude of which depends on soil rewetting frequency. But the source and implications of this CO2 efflux are unclear. We used a mesocosm field experiment to subject agricultural topsoil to two distinct drying and rewetting frequencies, measuring Birch effects (as 3-day cumulative CO2 efflux upon rewetting) and the overall CO2 efflux over the entire drying-rewetting cycle. We used 14C-labelled wheat straw to determine the contribution of fresh (recently incorporated) plant litter or extant soil organic matter (SOM) to these fluxes, and assessed the extent to which the amount of soil microbial biomass + K2SO4-extractable organic C (fumigated-extracted C, FEC) before rewetting determined the magnitude of Birch effect CO2 pulses. Our results showed a gradual increase in SOM-derived organic solutes within the FEC fraction, and a decrease in soil microbial biomass, under more extreme drying and rewetting conditions. But, contrary to our hypothesis, pre-wetting levels of FEC were not related to the magnitude of the Birch effects. In the longer term, rewetting frequency and temperature influenced the overall (31-day cumulative) amount of CO2–C released from SOM upon rewetting, but the overall 14CO2–C respired from fresh straw was only influenced by the rewetting frequency, with no effect of seasonal temperature differences of ∼15 °C. We conclude that the mineralization of fresh plant litter in soils is more sensitive to water limitations than extant SOM in soils under drying-rewetting conditions. Moreover, we found little evidence to support the hypothesis that the availability of microbial and soluble organic C before rewetting determined the magnitude of the Birch effects, and suggest that future work should investigate whether these short-term CO2 pulses are predominantly derived from substrate-supply mechanisms resulting from the disruption of the soil organo-mineral matrix

    Altered litter inputs modify carbon and nitrogen storage in soil organic matter in a lowland tropical forest

    Get PDF
    Soil organic matter (SOM) in tropical forests is an important store of carbon (C) and nutrients. Although SOM storage could be affected by global changes via altered plant productivity, we know relatively little about SOM stabilisation and turnover in tropical forests compared to temperate systems. Here, we investigated changes in soil C and N within particle size fractions representing particulate organic matter (POM) and mineral-associated organic matter (MAOM) after 13 years of experimental litter removal (L−) and litter addition (L+) treatments in a lowland tropical forest. We hypothesized that reduced nitrogen (N) availability in L− plots would result in N-mining of MAOM, whereas long-term litter addition would increase POM, without altering the C:N ratio of SOM fractions. Overall, SOM-N declined more than SOM-C with litter removal, providing evidence of N-mining in the L− plots, which increased the soil C:N ratio. However, contrary to expectations, the C:N ratio increased most in the largest POM fraction, whereas the C:N ratio of MAOM remained unchanged. We did not observe the expected increases in POM with litter addition, which we attribute to rapid turnover of unprotected SOM. Measurements of ion exchange rates to assess changes in N availability and soil chemistry revealed that litter removal increased the mobility of ammonium-N and aluminium, whereas litter addition increased the mobility of nitrate-N and iron, which could indicate SOM priming in both treatments. Our study suggests that altered litter inputs affect multiple processes contributing to SOM storage and we propose potential mechanisms to inform future work

    Tropical forest soil carbon stocks do not increase despite 15 years of doubled litter inputs

    Get PDF
    peer-reviewedSoil organic carbon (SOC) dynamics represent a persisting uncertainty in our understanding of the global carbon cycle. SOC storage is strongly linked to plant inputs via the formation of soil organic matter, but soil geochemistry also plays a critical role. In tropical soils with rapid SOC turnover, the association of organic matter with soil minerals is particularly important for stabilising SOC but projected increases in tropical forest productivity could trigger feedbacks that stimulate the release of stored SOC. Here, we demonstrate limited additional SOC storage after 13–15 years of experimentally doubled aboveground litter inputs in a lowland tropical forest. We combined biological, physical, and chemical methods to characterise SOC along a gradient of bioavailability. After 13 years of monthly litter addition treatments, most of the additional SOC was readily bioavailable and we observed no increase in mineral-associated SOC. Importantly, SOC with weak association to soil minerals declined in response to long-term litter addition, suggesting that increased plant inputs could modify the formation of organo-mineral complexes in tropical soils. Hence, we demonstrate the limited capacity of tropical soils to sequester additional C inputs and provide insights into potential underlying mechanisms

    Sequential chemical extractions of the mineral-associated soil organic matter: An integrated approach for the fractionation of organo-mineral complexes

    No full text
    a b s t r a c t Long-term stabilisation of soil organic matter (SOM) largely depends on its interaction with the active mineral components of soils. SOM may become associated with the mineral active surfaces through a wide variety of linkages, with different strength. Thus, fractionation procedures capable of assessing the strength through which mineral-associated SOM is stabilised can be very useful. This paper presents a soil organo-mineral fractionation method (henceforth, SOF) that essentially resumes the work of classical pedologists, who aimed to quantify the different modes through which organic compounds are bound to the mineral matrix using sequential extractions with chemical reagents (0.1 M sodium tetraborate, 0.1 M sodium pyrophosphate, 0.1 M sodium hydroxide, 0.1 M sodium hydroxide after sodium dithionite pretreatment, and 0.1 M sodium hydroxide after hydrofluoric acid pretreatment). We added a previous extraction with 0.5 M potassium sulfate to remove soluble organic compounds, and a weak acid attack with 0.33 M sulfuric acid to destroy possible SOM-occluding carbonate films, which are often assumed to contribute to SOM stability in calcareous soils. The proposed sequence is applied only to the organomineral complexes (<20 mm), after the removal of the particulate organic matter (POM) by ultrasonic dispersion and wet sieving. We tested the SOF method on four contrasting soils: two Haplic Calcisols (under crop and forest) and two Humic Cambisols (under forest and pasture), with organic C (OC) contents ranging from 1.8 to 3.4% and pH from 3.9 to 8.0. Our results showed that the mineral-associated SOM represents the largest SOM fraction (67e72% of the total organic C content), and that a substantial part of it is weakly associated with the mineral matrix, as it can be extracted by sodium tetraborate or sodium pyrophosphate. While the sodium tetraborate extract was the main fraction in acid soils, the sodium pyrophosphate extract was the main fraction in calcareous soils, thus highlighting the role of Ca in SOM stability. In contrast, our results suggest a small role of carbonate precipitation in the stabilisation of SOM < 20 mm. The sodium hydroxide extractions after both the sodium dithionite and HF treatments released little SOM in the studied soils, but the remaining (insoluble) residue accounted for 15e30% of total OC, and deserves further study. The SOF method can be a valuable tool for splitting mineral-associated SOM into different fractions regarding their proneness for extraction, and its thoroughness may prove most useful for comparative studies about SOM stabilisation

    Microbial growth rate measurements reveal that land-use abandonment promotes a fungal dominance of SOM decomposition in grazed Mediterranean ecosystems

    No full text
    The present study investigated the effects of land-use abandonment on the soil decomposer community of two grazed Mediterranean ecosystems (an annual grassland with scattered holm oaks and a low-density shrubland). To test the influence of grazing abandonment, a set of plots within each site were fenced and kept undisturbed during 4-5 years, during which above-ground plant community structure was monitored. After that, soil samples were collected from grazed and abandoned plots corresponding to the three different soil conditions: away from ("grass") and below tree canopies ("oak") within the annual grassland, and from the shrubland ("shrub"). Soil samples were split into two different layers (0-5 and 5-15 cm) and then analyzed for saprotrophic fungal (acetate into ergosterol incorporation) and bacterial (leucine incorporation) growth rates. Ergosterol content (as a fungal biomass estimator) and a standard set of soil chemistry variables were also measured. After 5 years of grazing exclusion, saprotrophic fungal growth rate clearly increased in both grass and oak surface layers whereas bacterial growth rate was not altered. This translated into significantly higher fungal-to-bacterial (F/B) growth rate ratios within the ungrazed plots. Similar trends were observed for the shrub soils after 4 years of exclusion. On the contrary, abandonment of grazing had negligible effects on the ergosterol content, as well as on the soil chemical variables (soil organic carbon, total N, C/N ratio, and pH), in all the three soil conditions assessed. These results indicated a shift toward a more fungal-dominated decomposer activity in soils following cessation of grazing and highlighted the sensitivity of the microbial growth rate parameters to changes associated with land use. Moreover, there were evidences of a faster fungal biomass turnover in the ungrazed plots, which would reflect an accelerated, though not bigger, fungal channel in soil organic matter mineralization

    Autotrophyc and heterotrophic contributions to short-term soil CO2 efflux following simulated summer precipitation pulses in a mediterranean dehesa

    Full text link
    [1] Autotrophic and heterotrophic components of soil CO2 efflux may have differential responses to environmental factors, so estimating the relative contribution of each component during summer precipitation pulses is essential to predict C balance in soils experiencing regular drought conditions. As even small summer rains induced high instantaneous soil respiration rates in Mediterranean wooded grasslands, we hypothesized that standing dead mass, surface litter, and topsoil layer could play a dominant role in the initial flush of CO2 produced immediately after soil rewetting; in contrast, soil CO2 effluxes during drought periods should be mostly derived from tree root activity. In a grazed dehesa, we simulated four summer rain events and measured soil CO2 efflux discontinuously, estimating its δ13C through a Keeling plot nonsteady state static chamber approach. In addition, we estimated litter contribution to soil CO2 efflux and extracted soil available C fractions (K2SO4-extracted C and chloroform-fumigated extracted C). The δ13C-CO2 from in-tube incubated excised tree roots and rewetted root-free soil was −25.0 (±0.2) and −28.4 (±0.2), respectively. Assuming those values as end-members' sources, the autotrophic component of soil CO2 efflux was dominant during the severe drought, whereas the heterotrophic contribution dominated from the very beginning of precipitation pulses. As standing dead mass and fresh litter contribution was low (<25%) in the first day and negligible after, we concluded that CO2 efflux after rewetting was mostly derived from microbial mineralization of available soil organic C fractions

    Data from: The Automated Root Exudate System (ARES): a method to apply solutes at regular intervals to soils in the field

    No full text
    1) Root exudation is a key component of nutrient and carbon dynamics in terrestrial ecosystems. Exudation rates vary widely by plant species and environmental conditions but our understanding of how root exudates affect soil functioning is incomplete, in part because there are few viable methods to manipulate root exudates in situ. To address this, we devised the Automated Root Exudate System (ARES), which simulates increased root exudation by applying small amounts of labile solutes at regular intervals in the field. 2) The ARES is a gravity-fed drip irrigation system comprising a reservoir bottle connected via a timer to a micro-hose irrigation grid covering c. 1 m2; 24 drip-tips are inserted into the soil to 4-cm depth to apply solutions into the rooting zone. We installed two ARES subplots within existing litter removal and control plots in a temperate deciduous woodland. We applied either an artificial root exudate solution (RE) or a procedural control solution (CP) to each subplot for 1 min d-1 during two growing seasons. To investigate the influence of root exudation on soil carbon dynamics, we measured soil respiration monthly and soil microbial biomass at the end of each growing season. 3) The ARES applied the solutions at a rate of c. 2 L m-2 wk-1 without significantly increasing soil water content. The application of RE solution had a clear effect on soil carbon dynamics but the response varied by litter treatment. Across two growing seasons, soil respiration was 25% higher in RE compared to CP subplots in the litter removal treatment, but not in the control plots. By contrast, we observed a significant increase in microbial biomass carbon (33%) and nitrogen (26%) in RE subplots in the control litter treatment. 4) The ARES is an effective, low-cost method to apply experimental solutions directly into the rooting zone in the field. The installation of the systems entails minimal disturbance to the soil and little maintenance is required. Although we used ARES to apply root exudate solution, the method can be used to apply many other treatments involving solute inputs at regular intervals in a wide range of ecosystems
    corecore